rational$66862$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

rational$66862$ - traduzione in greco

CONCEPT IN SINGULARITY THEORY
Rational Singularity; Rational singularities

rational      
adj. λογικός, ορθολογιστικός
rational number         
  • Illustration of the countability of the positive rationals
  • \N}})}}
  • A diagram showing a representation of the equivalent classes of pairs of integers
QUOTIENT OF TWO INTEGERS
RationalNumbers; Rational numbers; Rational field; Rational Number; Rational number field; Rationals; ℚ; Field of rationals; RATIONAL NUMBER; Set of rational numbers; Rational numerals; Rational numeral
ρητός αριθμός
algebraic expression         
MATHEMATICAL EXPRESSION BUILT UP FROM INTEGER CONSTANTS, VARIABLES, AND THE ALGEBRAIC OPERATIONS
Rational equation; Algebraic formula; Algebraic expressions; Expression in algebra
αλγεβρική παράσταση

Definizione

rational
adj. rational to + inf. (it is not rational to expect miracles)

Wikipedia

Rational singularity

In mathematics, more particularly in the field of algebraic geometry, a scheme X {\displaystyle X} has rational singularities, if it is normal, of finite type over a field of characteristic zero, and there exists a proper birational map

f : Y X {\displaystyle f\colon Y\rightarrow X}

from a regular scheme Y {\displaystyle Y} such that the higher direct images of f {\displaystyle f_{*}} applied to O Y {\displaystyle {\mathcal {O}}_{Y}} are trivial. That is,

R i f O Y = 0 {\displaystyle R^{i}f_{*}{\mathcal {O}}_{Y}=0} for i > 0 {\displaystyle i>0} .

If there is one such resolution, then it follows that all resolutions share this property, since any two resolutions of singularities can be dominated by a third.

For surfaces, rational singularities were defined by (Artin 1966).